(满分12分)已知a,b是实数,函数
和
是
的导函数,若
在区间
上恒成立,则称
和
在区间
上单调性一致
(1)设,若
和
在区间
上单调性一致,求b的取值范围;
(2)设且
,若
和
在以a,b为端点的开区间上单调性一致,
求|a―b|的最大值
某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减
少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中
逐渐溶化,水中的碱浓度与时间
(小时)的关系可近似地表示为:
,只有当污染河道水中碱的浓度不低于
时,才能对污
染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(2)第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单
位的固体碱,设第二次投放后水中碱浓度为,求
的函数式及水中碱浓度的最大值.
(此时水中碱浓度为两次投放的浓度的累加)
在平面直角坐标系内,动圆过定点
,且与定直线
相切.
(1)求动圆圆心的轨迹
的方程;
(2)中心在的椭圆
的一个焦点为
,直线过点
.若坐标原点
关于直线的对称点
在曲线
上,且直线与椭圆
有公共点,求椭圆
的长轴长取得最小值时的椭圆方程.
如图甲,设正方形的边长为
,点
分别在
上,并且满足
,如图乙,将直角梯形
沿
折到
的位置,使点
在
平面上的射影
恰好在
上.
(1)证明:平面
;
(2)求平面与平面
所成二面角的余弦值.
市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情
况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机
的.同一条道路去程与回程是否堵车相互独立. 假设李生早上需要先开车送小孩去丙地小学,
再返回经甲地赶去乙地上班.假设道路、
、
上下班时间往返出现拥堵的概率都是
,
道路、
上下班时间往返出现拥堵的概率都是
,只要遇到拥堵上学和上班的都会迟到.
(1)求李生小孩按时到校的概率;
(2)李生是否有八成把握能够按时上班?
(3)设表示李生下班时从单位乙到达小学丙遇到拥堵的次数,求
的均值.
在平面直角坐标系中,以
为始边,角
的终边与单位圆
的交点
在
第一象限,已知.
(1)若,求
的值;
(2)若点横坐标为
,求
.