如图,直线:
与直线
:
相交于点
,直线
与
轴交于点
,平行于
轴的直线
分别交直线
、直线
于
、
两点(点
在
的左侧)
⑴点的坐标为 ;
⑵如图1,若点在线段
上,在
轴上是否存在一点
,使得
为等腰直角三角形,若存在,求出点
的坐标;若不存在,说明理由;
⑶如图2.若以点为直角顶点,向下作等腰直角
,设
与
重叠部分的面积为
,求
与
的函数关系式;并注明
的取值范围.
已知抛物线y=x2﹣2x﹣与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C.
(1)点A的坐标为 ,点C的坐标为 ;
(2)在y轴的正半轴上是否存在点P,使以点P,O,A为顶点的三角形与△AOC相似?若存在,求出点P的坐标,若不存在,请说明理由.
如图,给出了我国从1998年~2002年每年教育经费投入的情况.
(1)由图可见,1998年~2002年这五年内,我国教育经费投入呈现出 趋势;
(2)根据图中所给数据,求我国1998年~2002年教育经费的年平均数;
(3)如果我国的教育经费从2002年的5480亿元增加到2004年的7891亿元,那么这两年的教育经费平均增长率为多少?(结果精确到0.01)
如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB,BC,CA分别相切于点D、E、F.
(1)求证:BE=CE;
(2)若∠A=90°,AB=AC=2,求⊙O的半径.
有100米长的篱笆材料,想围成一个矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求,现请你设计矩形仓库的长和宽,使它符合要求.
如图,某建筑工程队利用一面墙(墙的长度不限),用40米长的篱笆围成一个长方形的仓库.
(1)求长方形的面积是150平方米,求出长方形两邻边的长;
(2)能否围成面积220平方米的长方形?请说明理由.