(本小题满分14分)已知:以点C (t, )(t∈R , t≠ 0)为圆心的圆与
轴交于点O, A,
与y轴交于点O, B,其中O为原点.
(Ⅰ)当t=2时,求圆C的方程;
(Ⅱ)求证:△OAB的面积为定值;
(Ⅲ)设直线y = –2x+4与圆C交于点M, N,若,求圆C的方程.
如图:是=
的导函数
的简图,它与
轴的交点是(1,0)和(3,0)
(1)求的极小值点和单调减区间;
(2)求实数的值.
已知关于的不等式
<0的解集为
,
的解集为Q。
(Ⅰ)若,求集合
;
(Ⅱ)若,求正数
的取值范围。
设函数,其中
.
(1)若,求a的值;
(2)当时,讨论函数
在其定义域上的单调性.
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是
元,月平均销售
件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为
,那么月平均销售量减少的百分率为
.记改进工艺后,旅游部门销售该纪念品的月平均利润是
(元).
(1)写出与
的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
在数列中,
,
,
。
(Ⅰ)计算,
,
的值;
(Ⅱ)猜想数列的通项公式,并用数学归纳法加以证明