(本题共10分)已知函数,当
时,有极大值
。
(Ⅰ)求的值;
(Ⅱ)求函数的极小值。
已知函数f(x)=﹣
+3(﹣1≤x≤2).
(1)若λ=时,求函数f(x)的值域;
(2)若函数f(x)的最小值是1,求实数λ的值.
函数是奇函数.
(1)求的值;
(2)判断在区间
上单调性并加以证明;
设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若G(x)=在区间[1,2]上是增函数,求实数k的取值范围。
设函数f(x)=,则:
(1)证明:f(x)+f(1﹣x)=1;
(2)计算:f()+f(
)+f(
)+…+f(
).
(1)计算:+lg25+lg4+
+
;
(2)设集合A={x|≤2﹣x≤4},B={x|m﹣1<x<2m+1}.若A∪B=A,求m的取值范围.