设全集是实数集R,,
。
⑴当,求
,
。
⑵若,求实数
的取值范围.
P为椭圆+
=1上任意一点,F1、F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使·
=0,若存在,求出P点的坐标, 若不存在,试说明理由
设函数,其中常数a>1
(1)讨论f(x)的单调性;
(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.w.
已知命题:方程
在[-1,1]上有解;命题
:只有一个实数
满足不等式
,若命题“p或q”是假命题,求实数a的取值范围.
在边长为60cm的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?
已知各项均为正数的数列中,
是数列
的前
项和,对任意
,有
(Ⅰ)求常数的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)设数列的通项公式是
,前
项和为
,求证:对于任意的正整数
,总有
.