甲、乙、丙三人各进行一次射击,如果三人击中目标的概率都是0.6,求⑴三人都击中目标的概率;⑵其中恰有两人击中目标的概率;⑶至少有一人击中目标的概率.
已知,且
求证:
已知曲线C的参数方程是为参数),且曲线C与直线
=0相交于两点A、B
(1)求曲线C的普通方程;
(2)求弦AB的垂直平分线的方程(3)求弦AB的长
如图,已知ABC中的两条角平分线
和
相交于
,
B=60
,
在
上,且
。
(1)证明:四点共圆;
(2)证明:CE平分DEF。
设、
分别是椭圆
的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.
设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q。
(Ⅰ)若直线m与x轴正半轴的交点为T,且,求点T的坐标;
(Ⅱ)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(Ⅲ)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若
(T为(Ⅰ)中的点)的取值范围。