游客
题文

(本小题满分12分)
已知圆,                    
(Ⅰ)若直线过定点,且与圆相切,求的方程;
(Ⅱ) 若圆的半径为3,圆心在直线上,且与圆外切,求圆的方程.

科目 数学   题型 解答题   难度 中等
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号右侧的方框涂黑.
(22)(本小题满分10分)选修4—1:几何证明选讲。如图,⊙O是△的外接圆,D
是的中点,BDACE
(Ⅰ)求证:CD=DE·DB
(Ⅱ)若OAC的距离为1,求⊙O的半径

(本小题满分12分)已知,设函数
(Ⅰ)求函数的最大值;
(Ⅱ)若是自然对数的底数,当时,是否存在常数,使得不等式对于任意的正实数都成立?若存在,求出的值,若不存在,请说明理由.

(本小题满分12分)已知椭圆经过点,一个焦点是
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆轴的两个交点为,点在直线上,直线分别与椭圆交于两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.

(本小题满分12分)如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,……,依次类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是.记小球遇到第行第个障碍物(从左至右)上顶点的概率为
(Ⅰ)求的值,并猜想的表达式(不必证明);
(Ⅱ)已知,设小球遇到第6行第个障碍物(从左至右)上顶点时,
得到的分数为,试求的分布列及数学期望.

(本小题满分12分)如图,在直三棱柱中,平面侧面
(Ⅰ)求证:
(Ⅱ)若直线与平面所成角是,锐二面角的平面角是,试判断的大小关系,并予以证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号