如图几何体中,四边形为矩形,
,
,
,
,
.
(1)若为
的中点,证明:
面
;
(2)求二面角的余弦值.
年
月“神舟 ”发射成功.这次发射过程共有四个值得关注的环节,即发射、实验、授课、返回.据统计,由于时间关系,某班每位同学收看这四个环节的直播的概率分别为
、
、
、
,并且各个环节的直播收看互不影响.
(1)现有该班甲、乙、丙三名同学,求这名同学至少有
名同学收看发射直播的概率;
(2)若用表示该班某一位同学收看的环节数,求
的分布列与期望.
在中,
分别是角
的对边,且
.
(1)求的大小; (2)若
,
,求
的面积.
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线交椭圆C于A,B两点,且△ABF2的周长为8.过定点M(0,3)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).
(1)求椭圆C的方程;
(2)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围;如果不存在,请说明理由.
已知函数f(x)=ln x-ax(a∈R).
(1)讨论函数f(x)的单调区间;
(2)若函数g(x)=且g(x)≤1恒成立,求实数a的取值范围.