(本小题满分12分)已知在直角坐标系xoy中,曲线的参数方程为
(t为非零常数,为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以
轴正半轴为极轴)中,直线
的方程为
.
(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数,使得直线
与曲线C有两个不同的公共点
、
,且
(其中o为坐标原点)?若存在,请求出;否则,请说明理由
移动公司在国庆期间推出套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元,国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.
(Ⅰ)求某人获得优惠金额不低于300元的概率;
(Ⅱ)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选两人,求这两人获得相等优惠金额的概率.
设数列的前
项和为
,点
均在函数
的图象上.
(Ⅰ)求数列的通项公式;
(Ⅱ)若为等比数列,且
,求数列
的前
项和
.
已知函数(
为自然对数的底数)
(Ⅰ)若函数有三个极值点,求
的取值范围
(Ⅱ)若存在实数,使对任意的
,不等式
恒成立,求正整数
的最大值.
椭圆的中心为坐标原点
,焦点在
轴上,短轴长为
、离心率为
,直线
与
轴交于点
,与椭圆
交于相异两点
、
,且
.
(Ⅰ)求椭圆方程;(Ⅱ)求的取值范围.
设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.
(Ⅰ)求应从这三个协会中分别抽取的运动员人数;
(Ⅱ)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.
(ⅰ)用所给编号列出所有可能的结果;
(ⅱ)设为事件“编号为
的两名运动员至少有一人被抽到”,求事件
发生的概率.