甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记为选出的4名选手中女选手的人数,求
的分布列和期望.
已知向量,
设函数
.
求
的最小正周期与单调递增区间;
在
中,
分别是角
的对边,若
,
,求
的最大值.
在平面直角坐标系中,已知椭圆
的左焦点为
,且椭圆
的离心率
.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为
,
是椭圆
上异于
的任一点,直线
分别交
轴于点
,证明:
为定值,并求出该定值;
(3)在椭圆上,是否存在点
,使得直线
与圆
相交于不同的两点
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.
已知函数,
,其中
R.
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数
的取值范围;
(3)设函数,当
时,若
,
,总有
成立,求实数
的取值范围.
已知数列的前
项和为
,数列
是公比为
的等比数列,
是
和
的等比中项.
(1)求数列的通项公式;
(2)求数列的前
项和
.
如图,、
为圆柱
的母线,
是底面圆
的直径,
、
分别是
、
的中点,
.
(1)证明:;
(2)证明:;
(3)求四棱锥与圆柱
的体积比.