(本小题满分12分)已知直线的参数方程为
(
为参数),若以直角坐标系
的
点为极点,
方向为极轴,选择相同的长度单位建立极坐标系,得曲线
的极坐标方程为
(1)将直线的参数方程化为普通方程,把曲线
的极坐标方程化为直角坐标方程;
(2)若直线与曲线
交于
两点,求
.
(本小题满分12分)
如图,多面体AED-BFC的直观图及三视图如图所示,M、N分别为AF、BC的中点。
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积;
(3)求证:。
(本小题满分12分)
若函数为奇函数,当
时,
(如图).
(1)请补全函数的图象;(2)写出函数
的表达式;
(3)用定义证明函数在区间
上单调递增
.(本小题满分10分)
已知,
是一次函数,并且点
在函数
的图象上,点
在函数
的图象上,求
的解析式
(本小题14分)已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=2,f(2)=10
(1)确定函数的解析式;(2)用定义证明
在R上是增函数;
(3)若关于x的不等式f(x2-4)+f(kx+2k)<0在x∈(0,1)上恒成立,求k的取值范围。
(本小题12分)已知圆C满足(1)截y轴所得弦MN长为4;(2)被x轴分成两段圆弧,其弧 长之比为3:1,且圆心在直线y=x上,求圆C的方程。
(为方便学生解答,做了一种情形的辅助图形)