(本小题满分12分)已知A,B两点是椭圆与坐标轴正半轴的两个交点.
(1)设为参数,求椭圆的参数方程;
(2)在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大,并求此最大值.
设向量,函数
.
(Ⅰ)求函数的最大值与最小正周期;
(Ⅱ)求使不等式成立的
的取值范围.
已知,求实数
.
(本小题12分) 在某化学实验中,测得如下表所示的6组数据,其中x(min)表示化学反应进行的时,y(mg)表示未转化物质的量
x(min) |
l |
2 |
3 |
4 |
5 |
6 |
y(mg) |
39.8 |
32.2 |
25.4 |
20.3 |
16.2 |
13.3 |
(1)设x与z之问具有关系,试根据测量数据估计c和d的值;
(2)估计化学反应进行到10 min时未转化物质的量.
(本小题12分) 适当饮用葡萄酒可以预防心脏病,下表中的信息是19个发达国家一年中平均每人喝葡萄酒摄取酒精的升数z以及一年中每10万人因心脏病死亡的人数,
国家 |
澳大利亚 |
奥地利 |
比利时 |
加拿大 |
丹麦 |
芬兰 |
法国 |
冰岛 |
爰尔兰 |
意大利 |
x |
2.5 |
3.9 |
2.9 |
2.4 |
2.9 |
0.8 |
9.1 |
0.8 |
0.7 |
7.9 |
y |
211 |
167 |
131 |
191 |
220 |
297 |
71 |
221 |
300 |
107 |
国家 |
荷兰 |
新西兰 |
挪威 |
西班牙 |
瑞典 |
瑞士 |
英国 |
美国 |
德国 |
x |
1.8 |
1.9 |
0.8 |
6.5 |
1.6 |
5.8 |
1.3 |
1.2 |
2.7 |
y |
167 |
266 |
227 |
86 |
207 |
115 |
285 |
199 |
172 |
(1)画出散点图,说明相关关系的方向、形式及强度;
(2)求出每10万人中心脏病死亡人数,与平均每人从葡萄酒得到的酒精x(L)之间的线性回归方程.
(3)用(2)中求出的方程来预测以下两个国家的心脏病死亡率,其中一个国家的成人每年平均从葡萄酒中摄取1L的酒精,另一国则是8 L.
(本小题11分) 在7块大小及条件相同的试验田上施肥,做肥量对小麦产量影响的试验,得到如下一组数据:
施化肥量x |
15 |
20 |
25 |
30 |
35 |
40 |
45 |
小麦产量 |
330 |
345 |
365 |
405 |
445 |
450 |
455 |
(1)画出散点图;
(2)对x与y进行线性回归分析,并预测施肥量30时小麦的产量为多少?