游客
题文

(本小题满分12分)如图,在四棱锥P—ABCD中,底面是边长为的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.

(Ⅰ)证明:MN∥平面ABCD;
(Ⅱ) 过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.

科目 数学   题型 解答题   难度 较易
知识点: 立体图形的结构特征
登录免费查看答案和解析
相关试题

△ABC的三个角A,B,C所对的边分别是a,b,c,向量=(2,-1),=(sinBsinC,+2cosBcosC),且。⑴求角A的大小。⑵现给出以下三个条件:①B=45º;②2sinC-(+1)sinB=0;③a=2。试从中再选择两个条件以确定△ABC,并求出所确定的△ABC的面积。

.将编号为1,2,3的三个小球随意放入编号为1,2,3的三个纸箱中,每个纸箱内有且只有一个小球,称此为一轮“放球”,设一轮“放球”后编号为i(i=1,2,3)的纸箱放入的小球编号为ai,定义吻合度误差为=|1-a1|+|2-a2|+|3-a3|。假设a1,a2,a3等可能地为1、2、3的各种排列,求⑴某人一轮“放球”满足=2时的概率。⑵的数学期望。

(本小题满分14分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”.试问:函数是否存在“中值相依切线”,请说明理由.

(本小题满分13分)
已知是单调递增的等差数列,首项,前项和为,数列是等比数列,首项
(Ⅰ)求的通项公式。
(Ⅱ)令的前n项和

(本小题满分12分)
已知椭圆的焦点,过作垂直于轴的直线被椭圆所截线段长为,过作直线l与椭圆交于A、B两点.
(I)求椭圆的标准方程;
(Ⅱ)是否存在实数使,若存在,求的值和直线的方程;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号