(本题10分)袋中有红、白两种颜色的小球共7个,它们除颜色外完全相同,从中任取2个,都是白色小球的概率为,甲、乙两人不放回地从袋中轮流摸取一个小球,甲先取,乙后取,然后再甲取……,直到两人中有一人取到白球时游戏停止,用X表示游戏停止时两人共取小球的个数。
(1)求;
(2)求。
已知函数f(x)=(其中A>0,
)的图象如图所示。
(Ⅰ)求A,w及j的值;
(Ⅱ)若tana=2,求的值。
已知数列的前n项和为
,
,
,等差数列
中
,且
,又
、
、
成等比数列.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)求数列的前n项和
.
已知函数.
(Ⅰ)当a=0时,求函数f(x)的图像在点A(1,f(1))处的切线方程;
(Ⅱ)若f(x)在R上单调,求a的取值范围;
(Ⅲ)当时,求函数f(x)的极小值。
在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖。
(Ⅰ)求仅一次摸球中奖的概率;
(Ⅱ)求连续2次摸球,恰有一次不中奖的概率;
(Ⅲ)记连续3次摸球中奖的次数为,求
的分布列。
在正四棱柱中,E,F分别是
的中点,G为
上任一点,EC与底面ABCD所成角的正切值是4.
(Ⅰ)求证AGEF;
(Ⅱ)确定点G的位置,使AG面CEF,并说明理由;
(Ⅲ)求二面角的余弦值。