设(
为实常数).
(1)当时,证明:
不是奇函数;
(2)设是奇函数,求
与
的值;
(3)在满足(2)且当时,若对任意的
,不等式
恒成立,求的取值范围.
(本小题满分12分)已知函数,数列
满足
.(Ⅰ)求证:数列
是等差数列;(Ⅱ)记
,试比较
与1的大小.
(本小题满分12分)袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球。(I)试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
人造卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点离地面距离为p,远地点离地面距离为q,地球的半径为R.求卫星运行轨道的短轴长.
抛物线y2=2px的焦点弦AB的中点为M,A、B、M在准线上的
影依次为C、D、N.求证:
(1)A、O、D三点共线,B、O、C三点共线;
(2)FN⊥AB(F为抛物线的焦点)
.已知双曲线=1(a>0,b>0)的左、右两个焦点分别为F1、F2,P是它左支上一点,P到左准线的距离为d,双曲线的一条渐近线为y=
x,问是否存在点P,使|PF1|、|PF2|成等比数列?若存在,求出P的坐标;若不存在说明理由.