游客
题文

椭圆C的中心在原点O,它的短轴长为,相应的焦点的准线了l与x轴相交于A,|OF1|=2|F1A|.
(1)求椭圆的方程;
(2)过椭圆C的左焦点作一条与两坐标轴都不垂直的直线l,交椭圆于P、Q两点,若点M在轴上,且使MF2的一条角平分线,则称点M为椭圆的“左特征点”,求椭圆C的左特征点;
(3)根据(2)中的结论,猜测椭圆的“左特征点”的位置.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分12分)设实数满足,试比较的大小关系。

(本小题满分12分)
设函数
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求函数的最大值和最小值.

(本小题满分13分)
定义F(xy)=(1+x)y,其中xy∈(0,+∞).
(1)令函数f(x)=F(1,log2(x3ax2bx+1)),其图象为曲线C,若存在实数b使得曲线Cx0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(2)令函数g(x)=F(1,log2[(lnx-1)exx]),是否存在实数x0∈[1,e],使曲线yg(x)在点xx0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
(3)当xy∈N,且x<y时,求证:F(xy)>F(yx).

(本小题满分13分)
设函数yf(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意xy∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{an}满足:a1f(1)+1,f(-)+f(+)=0.设Snaaaaaa+…+aaaa.
(1)求数列{an}的通项公式,并求Sn关于n的表达式;
(2)设函数g(x)对任意xy都有:g(xy)=g(x)+g(y)+2xy,若g(1)=1,正项数列{bn}满足:bg(),Tn为数列{bn}的前n项和,试比较4SnTn的大小.

(本小题满分13分)
某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3).
(1)求该企业正常生产一年的利润L(x)与出厂价x的函数关系式;
(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号