已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是 AB、PC的中点.
(1) 求证:EF∥平面PAD;
(2) 求证:EF⊥CD;
(3) 若∠PDA=45°,求EF与平面ABCD所成的角的大小.
已知函数
的图象过点
.
(1)求实数
的值;
(2)求函数
的最小正周期及最大值.
已知椭圆
的长轴长为
,离心率为
,
分别为其左右焦点.一动圆过点
,且与直线
相切.
(1)(ⅰ)求椭圆
的方程;(ⅱ)求动圆圆心轨迹
的方程;
(2)在曲线
上有四个不同的点
,满足
与
共线,
与
共线,且
,求四边形
面积的最小值.
已知函数
(
)
(1)若
在点
处的切线方程为
,求
的解析式及单调递减区间;
(2)若
在
上存在极值点,求实数
的取值范围.
已知数列
的前
项和
,数列
满足
.
(1)求数列
的通项
;
(2)求数列
的通项
;
(3)若
,求数列
的前
项和
.
如图,已知
为平行四边形,
,
,
,点
在
上,
,
,
与
相交于
.现将四边形
沿
折起,使点
在平面
上的射影恰在直线
上.
(1)求证:
平面
;
(2)求折后直线
与平面
所成角的余弦值.