为了保护水资源,提倡节约用水,某市对居民生活用水收费标准如下:每户每月用水不超过6吨时每吨3元,当用水超过6吨但不超过15吨时,超过部分每吨5元,当用水超过15吨时,超过部分每吨10元。
(1)求水费y(元)关于用水量x(吨)之间的函数关系式;
(2)若某户居民某月所交水费为93元,试求此用户该月的用水量。
已知函数
的图像过原点,且在
处的切线为直线
(Ⅰ)求函数
的解析式;
(Ⅱ)求函数
在区间
上的最小值和最大值.
已知
.
(1)若
恒成立,求
的最大值;
(2)若
为常数,且
,记
,求
的最小值.
(如图1)在平面四边形
中,
为
中点,
,
,且
,现沿
折起使
,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥
的体积;
(2)在线段PC上是否存在一点M,使直线
与直线
所成角为
?若存在,求出线段的长;若不存在,请说明理由.
已知函数
(
均为正常数),设函数
在
处有极值.
(1)若对任意的
,不等式
总成立,求实数
的取值范围;
(2)若函数
在区间
上单调递增,求实数
的取值范围.
已知数列
为等差数列,数列
为等比数列,若
,且
.
(1)求数列
,
的通项公式;
(2)是否存在
,使得
,若存在,求出所有满足条件的
;若不存在,请说明理由.