顾客李某于今年“五·一”期间到电器商场购买空调,与营业员有如下的一段对话:
顾客李某:A品牌的空调去年“国庆”期间价格为3000元,这次便宜多了,一次就降为2430元,是不是质量有问题?
营业员:不是一次降价,这是第二次降价,今年春节期间已经降了一次价,两次降价的幅度相同.我们所销售的空调质量都是很好的,尤其是A品牌系列空调的质量是一流的.
顾客李某:我们单位的同事也想买一台A品牌的空调,有优惠政策吗?
营业员:有,请看《购买A品牌系列空调的优惠办法》.购买A品牌系列空调的优惠办法:
方案一:各种型号的空调每台价格优惠5%,送货上门,负责安装,每台空调另加运输费和安装费共90元.
方案二:各种型号的空调每台价格优惠2%,送货上门,负责安装,免运输费和安装费.根据以上对话和A品牌系列空调销售的优惠办法,请你回答下列问题:
(1)求A品牌系列空调平均每次降价的百分率?
(2)请你为顾客李某决策,选择哪种优惠更合算,并通过计算说明。
如图,在平面直角坐标系中,已知点A(2,3),B(6,3),连结AB,如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”.
(1)判断点C(,
)是否是线段AB的“邻近点” .
(2)若点Q(m,n)是线段AB的“邻近点”,则m的取值范围 .
已知抛物线y=ax2+2x+c与x轴交于A(1,0)和点B,与y轴交于点C(0,﹣3).
(1)求抛物线的解析式.
(2)如图1,已知点H的坐标为(0,1),设点M为y轴左侧抛物线上的一个动点,试猜想:是否存在这样的点M,使|MA﹣MH|的值最大,如果存在,请求出点M的坐标;如果不存在,请说明理由.
(3)如图2,过x轴上点E(﹣2,0)作ED⊥AB交抛物线于点D,在y轴上找一点F,使△EDF的周长最小,求出此时点F的坐标;
(4)如图3,已知点N(0,﹣1).问在抛物线上是否存在点Q(点Q在y轴的左侧),使得△QNC的面积与△QNA的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为A(﹣1,0),另一交点为B,与y轴的交点坐标为C(0,3).
(1)求出b,c的值,并写出此二次函数的解析式;
(2)求出顶点D的坐标以及S△BCD面积;
(3)根据图象,写出函数值y为正数时,自变量x的取值范围.
如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆A、B,恰好被南岸的两棵树C、D遮住,并且在这两棵树之间还有三棵树,求河的宽度.
为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?