某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了
两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为
B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工
3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设
此人对A和B两种饮料没有鉴别能力.
(1)求此人被评为优秀的概率;
(2)求此人被评为良好及以上的概率.
(本小题满分14分)
已知奇函数有最大值
, 且
, 其中实数
是正整数.
求的解析式;
令, 证明
(
是正整数).
(本小题满分14分)
如图, 在四棱锥中,顶点
在底面
上的射影恰好落在
的中点
上,又∠
,
,且
=1:2:2.
(1) 求证:
(2) 若, 求直线
与
所成的角的余弦值;
(3) 若平面与平面
所成的角为
, 求
的值
(本小题满分14分)
设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.
三人各向目标射击一次,求至少有一人命中目标的概率;
三人各向目标射击一次,求恰有两人命中目标的概率;
(3)若甲单独向目标射击三次,求他恰好命中两次的概率.
(本小题满分14分)
已知数列{}是首项为
等于1且公比
不等于1的等比数列,
是其前
项的和,
成等差数列.
(1) 求和 ;
(2) 证明 12成等比数列
(本小题满分14分)
已知
(1)求的值
(2)求的值