在株洲市二中组织的“青春杯”篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是,
.两人共投篮3次,且第一次由甲开始投篮.假设每人每次投篮命中与否均互不影响.
(1)求3次投篮的人依次是甲、甲、乙的概率;
(2)若投篮命中一次得1分,否则得0分.用ξ表示甲的总得分,求ξ的分布列和数学期望.
在△ABC中,已知A=,
.
(1)求cosC的值;
(2)若BC=2,D为AB的中点,求CD的长.
(本小题满分14分)已知函数图像上的点
处的切线与直线
垂直
.
(1)求的单调区间;
(2)求函数与
的图象在区间
上交点的个数;
(3)证明:当时,
.
(本小题满分13分)已知椭圆的中心在原点,焦点在
轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为
的正方形(记为
).
(1)求椭圆的方程;
(2)设点是直线
与
轴的交点,过点
的直线
与椭圆
相交于
两点,当线段
的中点落在正方形
内(包括边界)时,求直线
斜率的取值范围.
(本小题满分12分)如图1所示,直角梯形,
,
,
,
、
为线段
、
上的点,且
,设
,沿
将梯形
翻折,使平面
平面
(如图2所示).
(1)若以、
、
、
为顶点的三棱锥体积记为
,求
的最大值及取最大值时
的位置;
(2)在(1)的条件下,试在线段上的确定一点
使得
,并求直线
与平面
所成的角
的正弦值.