(本题满分12分,每小题6分)
(1)若
为基底向量,且
若A、B、D三点共线,求实数k的值;
(2)用“五点作图法”在已给坐标系中画出函数
一个周期内的简图,并指出该函数图象是由函数
的图象进行怎样的变换而得到的?
(本小题满分12分)
已知数列
满足
,点
在直线
上.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若数列
满足
求
的值;
(Ⅲ)对于(II)中的数列
,求
的值
(本小题满分12分)
已知梯形
中,
∥
,
,
,
、
分别是
上的点,
∥
,
,
是
的中点。沿
将梯形
翻折,使平面
⊥平面
(如图) .
(Ⅰ)当
时,求证:
;
(Ⅱ)以
为顶点的三棱锥的体积记为
,求
的最大值;
(Ⅲ)当
取得最大值时,求钝二面角
的余弦值.
(本小题满分12分)
小张参加了清华大学、上海交大、浙江大学三个学校的自主招生考试,各学校是否通过相互独立,其通过的概率分别为
、
、
(允许小张同时通过多个学校)
(1)小张没有通过任何一所学校的概率;
(2)设小张通过的学校个数为ξ,求ξ的分布列和它的数学期望。
(本小题满分12分)
设函数
(其中
),且
的图象在
轴右侧的第一个最高点的横坐标为
。
(Ⅰ)求
的值。
(Ⅱ)如果
在区间
上的最小值为
,求
的值。
((本小题12分)
已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为
.
(1)求椭圆的标准方程.
(2)斜率为1的直线
与椭圆交于A、B两点,O为原点,
当△AOB的面积最大时,求直线
的方程.