已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB边上的高所在的直线方程;
(2)直线//AB,与AC,BC依次交于E,F,
.求
所在的直线方程。
已知向量,
,函数
.
(1)求函数定义域及最小正周期;
(2)求函数的单调减区间.
已知函数.
(1)求函数的极值;
(2)证明:当时,
;
(3)证明:对任意给定的正数,总存在
,使得当
,恒有
.
已知椭圆长轴的一个端点为圆
的圆心,且点
为椭圆
上一点.
(1)求椭圆的方程与离心率;
(2)过椭圆的焦点
作斜率为
的直线
交椭圆于点
,请问以
为直径的圆能否过坐标原点,若能求出此时
的值,若不能请说明理由.
若各项都不相等的数列满足
,
(
且为常数),且数列
为等比数列.
(1)求的值;
(2)若数列,
为数列
的前
项和,证明:
如图所示,在三棱柱中,
底面
,点
在平面
中的投影为线段
上的点
.
(1)求证:⊥
(2)点为
上一点,若
,
,求三棱锥
的体积.