选修4-5:不等式选讲
已知关于的不等式
(其中
).
(1)当时,求不等式的解集;
(2)若不等式有解,求实数的取值范围.
已知向量,
,函数
.
(1)求函数的最小正周期;
(2)若
时,求
的单调递减区间.
(14分)已知函数.
(1)若在
时,有极值
,求
、
的值.
(2)当为非零实数时,
是否存在与直线
平行的切线,如果存在,求出切线的方程,如果不存在,说明理由.
(3)设函数的导函数为
,记函数
的最大值为M,求证
.
已知数列的前n项和为
,且
.
(1)求数列的通项;
(2)若数列中,
,点P(
,
)在直线
上,记
的前n项和为
,当
时,试比较
与
的大小.
(13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线
的焦点重合.
(1)求椭圆C的方程;
(2)过点S(,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
(12分)如图,在棱长为2的正方体ABCD -A1B1C1D1中,E、F分别为A1D1和CC1 的中点.
(1)求证:EF∥平面ACD1;
(2)求面EFB与底面ABCD所成的锐二面角余弦值的大小.