某企业决定用万元援助灾区
所学校,用于搭建帐篷和添置教学设备。根据各校不同的受灾情况,该企业捐款的分配方案如下:所有学校得到的捐款数都相等,到第
所学校的捐款恰好分完,捐款的分配方法如下表所示. (其中
,
,
都是正整数)
根据以上信息,解答下列问题:
(1)写出与
的关系式;
(2)当时,该企业能援助多少所学校?
(3)根据震区灾情,该企业计划再次提供不超过万元的捐款,按照原来的分配方案援助其它学校.若
由 (2)确定,则再次提供的捐款最多又可以援助多少所学校?
(本小题满分8分)如图,在一面与地面垂直的围墙的同一侧有一根高10米的旗杆AB和一个
高度未知的电线杆CD,它们都与地面垂直。为了测得电线杆的高度,一个小组的同学进行了如下测量:某
一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10
米;而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米。依据这些数据,该
小组的同学计算出了电线杆的高度。
(1)该小组的同学在这里利用的是____________投影的有关知识进行计算的;
(2)试计算出电线杆的高度,并写出计算的过程。
(本小题6分)为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练。球从一个人
脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次。
(1)求请用树状图列举出三次传球的所有可能情况;
(2)传球三次后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
(本小题5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦,且圆心P到∠AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)。
(本小题满分10分。每题5分)
(1)计算:;
(2)解方程:
在平面直角坐标系中,矩形OABC的顶点A坐标为(0,3),顶点C坐标为(8,0).直线交AB于点D,点P从O点出发,沿射线OD方向以每秒
个单位长度的速度移动,同时点Q从C点出发沿x轴向原点O方向以每秒1个单位长度的速度移动,当点Q到达O点时,点P停止移动.连结PB,PC,设运动时间为
秒.
(1)求D点坐标;
(2)当△PBC为等腰三角形时,求P点坐标;
(3)若点P,Q在运动过程中存在某一时刻,使得以点O,P,Q为顶点的三角形与△BCQ相似,求P的运动速度a的值.