(本小题满分14分)设集合W是满足下列两个条件的无穷数列{an}的集合:①, ②.其中,是与无关的常数.(Ⅰ)若{}是等差数列,是其前项的和,,,证明:;(Ⅱ)设数列{}的通项为,且,求的取值范围;(Ⅲ)设数列{}的各项均为正整数,且.证明.
抛物线有一内接直角三角形,直角的顶点在原点,一直角边的方程是,斜边长是,求此抛物线的方程。
设函数,若曲线的斜率最小的切线与直线平行,求:(1)的值;(2)函数的单调区间和极值。
若在上有最小值,则实数的取值范围是_____
已知函数R). (Ⅰ)若,求曲线在点处的的切线方程; (Ⅱ)若对任意恒成立,求实数的取值范围.
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为的直线经过点(0,1),与椭圆交于不同两点、. (1)求椭圆的标准方程; (2)当椭圆的右焦点在以为直径的圆内时,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号