(本小题满分12分)
已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若
天购买一次,需要支付
天的保管费)。其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.
(1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元?[
(2)设该厂天购买一次配料,求该厂在这
天中用于配料的总费用
(元)关于
的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?
如图,设抛物线:
的焦点为
,准线为
,过准线
上一点
且斜率为
的直线
交抛物线
于
,
两点,线段
的中点为
,直线
交抛物线
于
,
两点.
(1)求抛物线的方程及
的取值范围;
(2)是否存在值,使点
是线段
的中点?若存在,求出
值,若不存在,请说明理由.
如图,三棱柱是直棱柱,
.点
分别为
和
的中点.
(1)求证:平面
;
(2)求点到平面
的距离.
节日期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的顺序,随机抽取第一辆汽车后,每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段
,
,
,
,
,
后得到如下图的频率分布直方图.
(1)请直接回答这种抽样方法是什么抽样方法?并估计出这40辆车速的中位数;
(2)设车速在的车辆为
,
, ,
(
为车速在
上的频数),车速在
的车辆为
,
, ,
(
为车速在
上的频数),从车速在
的车辆中任意抽取
辆共有几种情况?请列举出所有的情况,并求抽取的
辆车的车速都在
上的概率.
已知函数(
).
(1)求的单调递增区间;
(2)在锐角三角形中,
、
、
分别是角
、
、
的对边,若
,
,
的面积为
,求
的值.
设数列满足
,且对任意
,函数
满足
,若
,则数列
的前
项和
为.