某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件)之间,可近似看做一次函数
的关系(图象如图所示).
(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元:
①求S关于的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
(本小题满分13分)根据新修订的《环境空气质量标准》指出空气质量指数在,各类人群可正常活动.某市环保局在2014年对该市进行为期一年的空气质量检测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为
,
,
,
,
,由此得到样本的空气质量指数频率分布直方图,如图.
(1)求的值;
(2)根据样本数据,试估计这一年度的空气质量指数的平均值;
(3)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为,求
的分布列和数学期望.
(本小题满分13分)已知函数.
(1)求函数的最小正周期和函数
的单调递增区间;
(2)在中,角
,
,
所对的边分别为
,
,
,若
,
,
的面积为
,求边长
的值.
(本题满分14分)已知椭圆的离心率为
,点P(1,
)在该椭圆上.
(1)求椭圆的标准方程;
(2)若直线与圆O:
相切,并椭圆交于不同的两点A、B,求
△AOB面积S的最大值.
(本题满分13分)已知函数,
(a、b为常数).
(1)求函数在点(1,
)处的切线方程;
(2)当函数g(x)在x=2处取得极值-2.求函数的解析式;
(3)当时,设
,若函数
在定义域上存在单调减区间,求实数b的取值范围;
(本题满分12分)已知函数f(x)=(
).
(1)求函数f(x)的周期和递增区间;
(2)若函数在[0,
]上有两个不同的零点x1、x2,求tan(x1+x2)的值.