如图,在平面直角坐标系xOy中,直线的图象与反比例函数
的图象交于点A(1,m),与x轴交于点
,过点A作
轴于点
.
(1)求一次函数的解析式;
(2)若P为x轴上一点,且△ABP的面积为10,直接写出点的坐标.
已知,求代数式
的值.
已知:如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.
求证:BE=CF.
解不等式组:
,抛物线交x轴于点Q、M,交y轴于点P,点P关于x轴的对称点为N。
(1)求点M、N的坐标,并判断四边形NMPQ的形状;
(2)如图,坐标系中有一正方形ABCD,其中AB=2cm且CD⊥x轴,CD的中点E与Q点重合,正方形ABCD以1cm/s的速度沿射线QM运动,当正方形ABCD完全进入四边形QPMN时立即停止运动.
①当正方形ABCD与四边形NMPQ的交点个数为2时,求两四边形重叠部分的面积y与运动时间t之间的函数关系式,并写出自变量t的取值范围;
②求运动几秒时,重叠部分的面积为正方形ABCD面积
的一半.