游客
题文

解方程:(4-y)=(y+3)

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数 y = - 12 x 2 + 2 的图象并探究该函数的性质.

x

﹣4

﹣3

﹣2

﹣1

0

1

2

3

4

y

- 2 3

a

﹣2

﹣4

b

﹣4

﹣2

- 12 11

- 2 3

(1)列表,写出表中 a b 的值: a   b   

描点、连线,在所给的平面直角坐标系中画出该函数的图象.

(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):

①函数 y = - 12 x 2 + 2 的图象关于y轴对称;

②当 x 0 时,函数 y = - 12 x 2 + 2 有最小值,最小值为 6

③在自变量的取值范围内函数y的值随自变量x的增大而减小.

(3)已知函数 y = - 2 3 x - 10 3 的图象如图所示,结合你所画的函数图象,直接写出不等式 - 12 x 2 + 2 < - 2 3 x - 10 3 的解集.

在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.

定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.

例如: 426 是“好数”,因为4,2,6都不为0,且 4 + 2 6 ,6能被6整除;

643不是“好数”,因为 6 + 4 10 ,10不能被3整除.

(1)判断 312 675 是否是“好数”?并说明理由;

(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.

每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:

八年级抽取的学生的竞赛成绩:

4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.

七、八年级抽取的学生的竞赛成绩统计表

年级

七年级

八年级

平均数

7.4

7.4

中位数

a

b

众数

7

c

合格率

85%

90%

根据以上信息,解答下列问题:

(1)填空:a  b  c  

(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;

(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.

如图,在平行四边形 ABCD 中, AE CF 分别平分 BAD DCB ,交对角线 BD 于点EF

(1)若 BCF 60 ° ,求 ABC 的度数;

(2)求证: BE DF

如图(1),在平面直角坐标系中,抛物线 y a x 2 + bx + 4 a 0 y轴交于点A,与x轴交于点 C (﹣ 2 0 ,且经过点B(8,4),连接ABBO,作 AM OB 于点M,将 Rt OMA 沿y轴翻折,点M的对应点为点N.解答下列问题:

(1)抛物线的解析式为  ,顶点坐标为 

(2)判断点N是否在直线AC上,并说明理由;

(3)如图(2),将图(1)中 Rt OMA 沿着OB平移后,得到 Rt DEF .若DE边在线段OB上,点F在抛物线上,连接AF,求四边形 AMEF 的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号