解方程:(4-y)=
(y+3)
如图,已知甲地在乙地的正东方向,因有大山阻隔,由甲地到乙地需要绕行丙地.已知丙地位于甲地北偏西30°方向,距离甲地460 km,丙地位于乙地北偏东66°方向,现要打通穿山隧道,建成甲乙两地直达高速公路,如果将甲、乙、丙三地当作三个点 A、 B、 C,可抽象成图(2)所示的三角形,求甲乙两地之间直达高速线路的长 AB(结果用含非特殊角的三角函数和根式表示即可).
如图,在△ ABC中,内角 A、 B、 C所对的边分别为 a、 b、 c.
(1)若 a=6, b=8, c=12,请直接写出∠ A与∠ B的和与∠ C的大小关系;
(2)求证:△ ABC的内角和等于180°;
(3)若 ,求证:△ ABC是直角三角形.
如图,抛物线 y= ax 2+ bx﹣2( a≠0)与 x轴交于 A(﹣3,0), B(1,0)两点,与 y轴交于点 C,直线 y=﹣ x与该抛物线交于 E, F两点.
(1)求抛物线的解析式.
(2) P是直线 EF下方抛物线上的一个动点,作 PH⊥ EF于点 H,求 PH的最大值.
(3)以点 C为圆心,1为半径作圆,⊙ C上是否存在点 M,使得△ BCM是以 CM为直角边的直角三角形?若存在,直接写出 M点坐标;若不存在,说明理由.
(1)【探究发现】
如图1,∠ EOF的顶点 O在正方形 ABCD两条对角线的交点处,∠ EOF=90°,将∠ EOF绕点 O旋转,旋转过程中,∠ EOF的两边分别与正方形 ABCD的边 BC和 CD交于点 E和点 F(点 F与点 C, D不重合).则 CE, CF, BC之间满足的数量关系是 .
(2)【类比应用】
如图2,若将(1)中的"正方形 ABCD"改为"∠ BCD=120°的菱形 ABCD",其他条件不变,当∠ EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.
(3)【拓展延伸】
如图3,∠ BOD=120°, OD= , OB=4, OA平分∠ BOD, AB= ,且 OB>2 OA,点 C是 OB上一点,∠ CAD=60°,求 OC的长.
某工厂制作 A, B两种手工艺品, B每件获利比 A多105元,获利30元的 A与获利240元的 B数量相等.
(1)制作一件 A和一件 B分别获利多少元?
(2)工厂安排65人制作 A, B两种手工艺品,每人每天制作2件 A或1件 B.现在在不增加工人的情况下,增加制作 C.已知每人每天可制作1件 C(每人每天只能制作一种手工艺品),要求每天制作 A, C两种手工艺品的数量相等.设每天安排 x人制作 B, y人制作 A,写出 y与 x之间的函数关系式.
(3)在(1)(2)的条件下,每天制作 B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知 C每件获利30元,求每天制作三种手工艺品可获得的总利润 W(元)的最大值及相应 x的值.