如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP= ,CQ=
时,P、Q两点间的距离 (用含
的代数式表示).
如图,已知二次函数y=ax2-4x+c的图像经过点A和点B.(1)求该二次函数的表达式;
(2)点E(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求Q到y轴的距离.
(3)设抛物线与y轴的的交点为C,点P为抛物线的对称轴上的一动点,求使∠PCB=90°的点P的坐标.
如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=.判断直线DE与半圆O的位置关系,并证明你的结论.
某地方教育局为了解去年九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
(1)请把条形统计图补充完整;
(2)样本中D级的学生人数占全班学生人数的百分比是;
(3)扇形统计图中A级所在的扇形的圆心角度数是;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。
求证:(1)△ADF≌△CBE;(2)EB∥DF。
先化简,再求值:,其中
,
。