游客
题文

如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.

(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP= ,CQ=时,P、Q两点间的距离 (用含的代数式表示).

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

将抛物线 C : y = ( x - 2 ) 2 向下平移6个单位长度得到抛物线 C 1 ,再将抛物线 C 1 向左平移2个单位长度得到抛物线 C 2

(1)直接写出抛物线 C 1 C 2 的解析式;

(2)如图(1),点 A 在抛物线 C 1 (对称轴 l 右侧)上,点 B 在对称轴 l 上, ΔOAB 是以 OB 为斜边的等腰直角三角形,求点 A 的坐标;

(3)如图(2),直线 y = kx ( k 0 k 为常数)与抛物线 C 2 交于 E F 两点, M 为线段 EF 的中点;直线 y = - 4 k x 与抛物线 C 2 交于 G H 两点, N 为线段 GH 的中点.求证:直线 MN 经过一个定点.

问题背景 如图(1),已知 ΔABC ΔADE ,求证: ΔABD ΔACE

尝试应用 如图(2),在 ΔABC ΔADE 中, BAC = DAE = 90 ° ABC = ADE = 30 ° AC DE 相交于点 F ,点 D BC 边上, AD BD = 3 ,求 DF CF 的值;

拓展创新 如图(3), D ΔABC 内一点, BAD = CBD = 30 ° BDC = 90 ° AB = 4 AC = 2 3 ,直接写出 AD 的长.

某公司分别在 A B 两城生产同种产品,共100件. A 城生产产品的总成本 y (万元)与产品数量 x (件 ) 之间具有函数关系 y = a x 2 + bx .当 x = 10 时, y = 400 ;当 x = 20 时, y = 1000 B 城生产产品的每件成本为70万元.

(1)求 a b 的值;

(2)当 A B 两城生产这批产品的总成本的和最少时,求 A B 两城各生产多少件?

(3)从 A 城把该产品运往 C D 两地的费用分别为 m 万元 / 件和3万元 / 件;从 B 城把该产品运往 C D 两地的费用分别为1万元 / 件和2万元 / 件. C 地需要90件, D 地需要10件,在(2)的条件下,直接写出 A B 两城总运费的和的最小值(用含有 m 的式子表示).

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 AB 为直径的 O AC 于点 D AE 与过点 D 的切线互相垂直,垂足为 E

(1)求证: AD 平分 BAE

(2)若 CD = DE ,求 sin BAC 的值.

8 × 5 的网格中建立如图的平面直角坐标系,四边形 OABC 的顶点坐标分别为 O ( 0 , 0 ) A ( 3 , 4 ) B ( 8 , 4 ) C ( 5 , 0 ) .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:

(1)将线段 CB 绕点 C 逆时针旋转 90 ° ,画出对应线段 CD

(2)在线段 AB 上画点 E ,使 BCE = 45 ° (保留画图过程的痕迹);

(3)连接 AC ,画点 E 关于直线 AC 的对称点 F ,并简要说明画法.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号