(本小题14分)某人有楼房一幢,室内面积共计180m2,拟分割成两类房间作为旅游客房,大房间每间面积为18m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15m2,可以住游客3名,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,每天能获得最大的房租收益?(注:设分割大房间为x间,小房间为y间,每天的房租收益为z元)
(1)写出x,y所满足的线性约束条件;
(2)写出目标函数的表达式;
(3)求x,y各为多少时,每天能获得最大的房租收益?每天能获得最大的房租收益是多少?
(本题12分)已知函数对任意实数p、q都满足
.
(Ⅰ)当时,求
的表达式;
(Ⅱ)设求
;
(Ⅲ)设求证:
.
(本题12分)某人抛掷一枚硬币,出现正反的概率都是,构造数列
,使
得,记
.
(Ⅰ)求的概率;
(Ⅱ)若前两次均出现正面,求的概率.
(本题12分)已知数列{an}中,a1=0,a2 =4,且an+2-3an+1+2an= 2n+1(),
数列{bn}满足bn=an+1-2an.
(Ⅰ)求证:数列{-
}是等比数列;
(Ⅱ)求数列{}的通项公式;
(Ⅲ)求.
(本题10分)已知函数是奇
函数,当x>0时,有最小值2,且f (1)
.
(Ⅰ)试求函数的解析式;
(Ⅱ)函数图象上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,说明理由.
(本题10分)解关于x的不等式:(a>0,a≠1).