游客
题文

(本小题14分)某人有楼房一幢,室内面积共计180m2,拟分割成两类房间作为旅游客房,大房间每间面积为18m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15m2,可以住游客3名,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,每天能获得最大的房租收益?(注:设分割大房间为x间,小房间为y间,每天的房租收益为z元)
(1)写出x,y所满足的线性约束条件;  
(2)写出目标函数的表达式;
(3)求x,y各为多少时,每天能获得最大的房租收益?每天能获得最大的房租收益是多少?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

求下列各曲线的标准方程
(Ⅰ)实轴长为12,离心率为,焦点在x轴上的椭圆;
(Ⅱ)抛物线的焦点是双曲线的左顶点.

已知命题:“”,命题:“”,若命题“”是真命题,求实数的取值范围。

(本小题14分)已知函数,设
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以图象上任意一点为切点的切线的斜率恒成立,求实数的最小值。
(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说名理由。

(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

(本小题12分)已知数列是各项均不为的等差数列,公差为为其前项和,且满足.数列满足为数列的前n项和.
(Ⅰ)求数列的通项公式和数列的前n项和
(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号