(本小题满分14分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1);
(2);
(3);
(4);
(5).
(I)试从上述五个式子中选择一个,求出这个常数;
(II)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
已知函数,
.
(1)求函数的最大值和最小值;
(2)设函数在
上的图象与
轴的交点从左到右分别为M、N,图象的最高点为P,求
与
的夹角的余弦
(本小题共14分)
如图,四棱锥的底面是正方形,
,点E在棱PB上.
(Ⅰ)求证:平面;
(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
(本小题共13分)直线和
轴,
轴分别交于点
,以线段
为边在第一象限内作等边△
,如果在第一象限内有一点
使得△
和△
的面积相等, 求
的值。
(本小题共12分)北京奥运会纪念章某特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x元(x∈N*).(Ⅰ)写出该特许专营店一年内销售这种纪念章所获得的利润y(元)与每枚纪念章的销售价格x的函数关系式(并写出这个函数的定义域);(Ⅱ)当每枚纪念销售价格x为多少元时,该特许专营店一年内利润y(元)最大,并求出这个最大值.
(本小题共12分) 已知两圆,
求(1)它们的公共弦所在直线的方程;(2)公共弦长。