(本小题满分14分)已知离心率为的椭圆
与直线
相交于
两点(点
在
轴上方),且
.点
是椭圆上位于直线
两侧的两个动点,且
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求四边形面积的取值范围.
(本小题满分10分)(注意:在试题卷上作答无效)
已知等比数列中,
,
分别为
的三内角
的对边,且
.
(1)求数列的公比
;
(2)设集合,且
,求数列
的通项公式.
( 本小题满分12分)
已知集合中的元素都是正整数,且
,对任意的
且
,有
.
(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)对于,试给出一个满足条件的集合
( 本小题满分12分)
已知点是离心率为
的椭圆
:
上的一点.斜率为
的直线
交椭圆
于
、
两点,且
、
、
三点不重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线、
的斜率之和为定值.
(本小题满分12分)
已知函数(
,实数
,
为常数).
(Ⅰ)若,求
在
处的切线方程;
(Ⅱ)若,讨论函数
的单调性.
(本小题满分12分)
为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
队别 |
北京 |
上海 |
天津 |
八一 |
人数 |
4 |
6 |
3 |
5 |
(Ⅰ)从这18名队员中随机选出两名,求两人来自同一支队的概率;
(Ⅱ)中国女排奋力拼搏,战胜韩国队获得冠军.若要求选出两位队员代表发言,设其中来自北京队的人数为,求随机变量
的分布列,及数学期望
.