(本小题12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2
表1:
生产能力分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
4 |
8 |
![]() |
5 |
3 |
表2:
生产能力分组 |
![]() |
![]() |
![]() |
![]() |
人数 |
6 |
y |
36 |
18 |
(1)先确定,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(注意:本题请在答题卡上作图)
(2)分别估计类工人和
类工人生产能力的众数、中位数和平均数。(精确到0.1)
已知函数
有极值,且导函数
的极值点是
的零点.(极值点是指函数取极值时对应的自变量的值)
(Ⅰ)求b关于a的函数关系式,并写出定义域;
(Ⅱ)证明: ;
(Ⅲ)若 , 这两个函数的所有极值之和不小于 ,求a的取值范围.
对于给定的正整数k,若数列
满足:
对任意正整数
总成立,则称数列{a n}是"
数列".
(Ⅰ)证明:等差数列 是" 数列";
(Ⅱ)若数列 既是"P(2)数列",又是" 数列",证明: 是等差数列.
如图,水平放置的正四棱柱形玻璃容器
和正四棱台形玻璃容器
的高均为
,容器
的底面对角线
的长为
cm,容器
的两底面对角线
,
的长分别为
和
.分别在容器
和容器
中注入水,水深均为
.现有一根玻璃棒
,其长度为
.(容器厚度、玻璃棒粗细均忽略不计)
(Ⅰ)将l放在容器 中, 的一端置于点 处,另一端置于侧棱 上,求 没入水中部分的长度;
(Ⅱ)将l放在容器 中, 的一端置于点 处,另一端置于侧棱 上,求 没入水中部分的长度.
如图,在平面直角坐标系
中,椭圆
的左、右焦点分别为
,
, 离心率为
,两准线之间的距离为
.点P在椭圆E上,且位于第一象限,过点
作直线
的垂线
, 过点
作直线
的垂线
.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线 , 的交点Q在椭圆E上,求点P的坐标.
已知向量
,
),
.
(Ⅰ)若 ,求x的值;
(Ⅱ)记 ,求 的最大值和最小值以及对应的x的值.