游客
题文

(本小题满分14分)已知 且,记内零点为.
(1)求当取得极大值时,的夹角θ.
(2)求的解集.
(3)求当函数取得最小值时的值,并指出向量的位置关系.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.
(1)求椭圆的方程;
(2)椭圆上一动点关于直线的对称点为,求的取值范围.

如图,已知直线的右焦点F,且交椭圆CAB两点,点AFB在直线上的射影依次为点DKE.
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)对于(1)中的椭圆C,若直线Ly轴于点M,且,当m变化时,求的值;
(3)连接AEBD,试探索当m变化时,直线AEBD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.

已知向量,经过定点且方向向量为的直线与经过定点且方向向量为的直线交于点M,其中R,常数a>0.
(1)求点M的轨迹方程;
(2)若,过点的直线与点M的轨迹交于C、D两点,求的取值范围.

已知长方形ABCD, AB=2, BC="1." 以AB的中点为原点建立如图8所示的平面直角坐标系.
(Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.

已知椭圆C:=1()的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,坐标原点到直线的距离为,求△面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号