按照要求写出下列形式的命题的
(1)“末位数字是0或5的整数能被5整除”的否命题;
(2)“任何实数x都是方程5x-12=0的根”的否定;
(3)“对于任意实数x,存在实数y,使x+y>0”的否定
(4)“若则二次方程
没有实根”的逆否命题
如图,在边长为4的菱形ABCD中,∠DAB=60°,点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求证:BD⊥平面POA;
(2)记三棱锥PABD体积为V1,四棱锥PBDEF体积为V2,且,求此时线段PO的长.
如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点,
(1)求证:MN∥平面AA1C1C;
(2)若AC=AA1,求证:MN⊥平面A1BC.
如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.
(1)求证:AB∥平面CDE;
(2)求证:平面ABCD⊥平面ADE.
如图,在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(1)求证:DE∥平面PBC;
(2)求证:DE⊥平面PAB.
设椭圆M:=1(a>
)的右焦点为F1,直线l:x=
与x轴交于点A,若
=2
(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求·
的最大值.