如图,等边与直角梯形
垂直,
,
,
,
.若
分别为
的中点.
(1)求的值; (2)求面
与面
所成的二面角大小.
某单位从一所学校招收某类特殊人才.对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
例如,表中运动协调能力良好且逻辑思维能力一般的学生有人.由于部分数据丢失,只知道从这
位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为
.
(1)求,
的值;
(2)从参加测试的位学生中任意抽取
位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率;
(3)从参加测试的位学生中任意抽取
位,设运动协调能力或逻辑思维能力优秀的学生人数为
,求随机变量
的分布列及其数学期望
.
已知函数,
.
(1)求的值及函数
的最小正周期;
(2)求函数在
上的单调减区间.
已知
(1)当时,求
的极值;
(2)当时,讨论
的单调性;
(3)若对任意的,恒有
成立,求实数
的取值范围.
已知椭圆的由顶点为A,右焦点为F,直线
与x轴交于点B且与直线
交于点C,点O为坐标原点,
,过点F的直线
与椭圆交于不同的两点M,N.
(1)求椭圆的方程;
(2)求的面积的最大值.
数列满足
.
(1)求的表达式;
(2)令,求
.