已知
(1)当时,求
的极值;
(2)当时,讨论
的单调性;
(3)若对任意的,恒有
成立,求实数
的取值范围.
要在墙上开一个上部为半圆,下部为矩形的窗户
(如图所示),在窗框总长度为的条件下,
(1)请写出窗户的面积
与圆的直径
的函数关系;
(2)要使窗户透光面积最大,窗户应具有怎样的尺寸?并写出最大值.
设为定义在R上的偶函数,当
时,
;当
时,
的图像时顶点在P(3,4),且过点A(2,2)的抛物线的一部分
(1)求函数在
上的解析式;
(2)在右面的直角坐标系中直接画出函数的图像;
(3)写出函数值域。
、设集合,
,且
.
(1)求的值;
(2)求函数的单调递增区间,并证明.
(7分)已知集合
,
,
,全集为实数集R.
(1)求;
(2)求;
(3)如果,求a的取值范围。
(本小题满分14分)
在中,角
所对的边分别为
,且
成等差数列.
(Ⅰ)求角的大小
(Ⅱ)若,求
边上中线长的最小值