已知命题,命题
是减函数,
若或
为真命题,
且
为假命题,求实数
的取值范围.
坐标系与参数方程在直角坐标系中,直线
的参数方程为
(t 为参数)。在极坐标系(与直角坐标系
取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
。
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于点A,B,若点P的坐标为(2,
),求|PA|+|PB|.
如图,△ABC内接于⊙O,AB =AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.
(1)求证:△ABE≌△ACD;
(2)若AB =6,BC =4,求AE.
已知函数f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a=时,方程f(1-x)=
有实根,求实数b的最大值.
若椭圆的左、右焦点分别为F1,F2,椭圆的离心率为
:2.(1)过点C(-1,0)且以向量
为方向向量的直线
交椭圆于不同两点A、B,若
,则当△OAB的面积最大时,求椭圆的方程。
(2)设M,N为椭圆上的两个动点,,过原点O作直线MN的垂线OD,垂足为D,求点D的轨迹方程.
如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.
(1)求证:AD⊥BC;
(2)求二面角B—AC—D的余弦值.