已知是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合.试问下列命题是否是真命题,如果是真命题,请给予证明;如果是假命题,请举反例说明.(1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;(2)至多有一个元素;(3)当a1≠0时,一定有.
在凸五边形中,已知,且 四点共圆.证明:四点共圆的充分必要条件是.
试求满足方程的所有整数对.
(本小题满分18分)过直线上的点作椭圆的切线、,切点分别为、,联结(1)当点在直线上运动时,证明:直线恒过定点; (2)当∥时,定点平分线段
(本小题满分16分)已知函数在区间上的最小值为,令,,求证:
(本小题满分14分)甲、乙两人进行乒乓球单打比赛,采用五局三胜制(即先胜三局者获冠军).对于每局比赛,甲获胜的概率为,乙获胜的概率为.如果将“乙获得冠军”的事件称为“爆出冷门”.试求此项赛事爆出冷门的概率.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号