(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。
(1)求证:AC⊥BD;
(2)若CA = CB,求证:平面BCD⊥平面ABD
(3)在上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出
的值
(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,
每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测
结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)己知每检测一件产品需要费用1 00元,设X表示直到检测出2件次品或者检测
出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).
(本小题满分10分)己知关于x的不等式|x+a|<b的解集为{x|2<x<4)
(1)求实数的值;
(2)求的最大值.
(本小题满分10分)在直角坐标系xOy中,曲线C1(t为参数,t≠0),
其中0≤<π,在以O为极点, x轴正半轴为极轴的极坐标系中,曲线
C2 : ,C3 :
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
(本小题满分10分)选修4—5:不等式选讲
已知.
(1)关于的不等式
恒成立,求实数
的取值范围;
(2)设,且
,求证:
.
(本小题满分10分)选修4—4:极坐标与参数方程
在直角坐标系中,直线
的参数方程为
(
为参数).再以原点为极点,以
正半轴为极轴建立极坐标系,并使得它与直角坐标系
有相同的长度单位.在该极坐标系中圆
的方程为
.
(1)求圆的直角坐标方程;
(2)设圆与直线
交于点
、
,若点
的坐标为
,求
的值.