已知函数f(x)=(x2+ax+2)ex,(x,a∈R).
(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;
(2)若函数y=f(x)为单调函数,求实数a的取值范围;
(3)当时,求函数f(x)的极小值.
设函数.
(1)若,求函数
的极值;
(2)若是函数
的一个极值点,试求出
关于
的关系式(即用
表示
),并确定
的单调区间;(提示:应注意对a的取值范围进行讨论)
(3)在(2)的条件下,设,函数
.若存在
使得
成立,求
的取值范围.
(本小题12分)已知椭圆的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
。证明:
为定值;
(3)在(2)的条件下,试问轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,请说明理由。
第21题图
某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图.(见下一页图)观察图形的信息,回答下列问题:
(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ)用分层抽样的方法在分数段为的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至多有
人在分数段
的概率。
已知{an}是正数组成的数列,a1=1,且点()(n
N*)在函数y=x2+1的图象上。 (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=(n∈N*),求数列{bn}的前n项和
。
已知向量,函数
的图像上一个最高点的坐标为
,与之相邻的一个最低点的坐标
.
(1)求的解析式.
(2)在△中,
是角
所对的边,且满足
,求角
的大小以及
取值范围.