(本小题满分13分)已知椭圆的中心在原点
,焦点
,
在
轴上,经过点
,
,且抛物线
的焦点为
.
(1) 求椭圆的方程;
(2) 垂直于的直线
与椭圆
交于
,
两点,当以
为直径的圆
与
轴相切时,求直线
的方程和圆
的方程.
已知椭圆:
的离心率为
,且过点
,设椭圆的右准线
与
轴的交点为
,椭圆的上顶点为
,直线
被以原点为圆心的圆
所截得的弦长为
.
⑴求椭圆的方程及圆
的方程;
⑵若是准线
上纵坐标为
的点,求证:存在一个异于
的点
,对于圆
上任意一点
,有
为定值;且当
在直线
上运动时,点
在一个定圆上.
如图,为一个等腰三角形形状的空地,腰
的长为
(百米),底
的长为
(百米).现决定在空地内筑一条笔直的小路
(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为
和
.
⑴若小路一端为
的中点,求此时小路的长度;
⑵求的最小值.
在菱形中,
,线段
的中点是
,现将
沿
折起到
的位置,使平面
和平面
垂直,线段
的中点是
.
⑴证明:直线∥平面
;
⑵判断平面和平面
是否垂直,并证明你的结论.
(本小题满分14分)
已知函数的定义域为R, 且对于任意
R,存在正实数
,使得
都成立.
若,求
的取值范围;
当时,数列
满足
,
.
证明:;
令,证明:
.
(本小题满分14分)
已知函数满足
,对于任意
R都有
,且
,令
.
(1)求函数的表达式;
(2)求函数的单调区间;
研究函数在区间
上的零点个数.