惠州市在每年的春节后,市政府都会发动公务员参与到植树活动中去.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲乙两种树苗中各抽测了10株树苗的高度,量出的高度如下(单位:厘米)
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入如图程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义.
如图1,在直角梯形中,
,
,且
.现以
为一边向形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,
为
的中点,如图2.
(1)求证:∥平面
;
(2)求证:平面
;
(3)求点到平面
的距离.
已知圆的极坐标方程为:.
(1)将极坐标方程化为普通方程;
(2)若点在该圆上,求
的最大值和最小值.
已知函数
(1)试判断函数的单调性;
(2)设,求
在
上的最大值;
(3)试证明:对,不等式
.
如图,在四棱锥中,底面
为直角梯形,且
,
,侧面
底面
. 若
.
(1)求证:平面
;
(2)侧棱上是否存在点
,使得
平面
?若存在,指出点
的位置并证明,若不存在,请说明理由;
(3)求二面角的余弦值.
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,记ξ=|x-2|+|y-x|.
(1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;
(2)求随机变量ξ的分布列.