(本小题满分13分)经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格
(元)与时间
(天)的函数关系近似满足
(
为正的常数),日销售量
(件)与时间
(天)的函数关系近似满足
,且第25天的销售金额为13000元.
(1)求
的值;
(2)试写出该商品的日销售金额
关于时间
的函数关系式,并求前半个月销售金额
的最小值。
(本小题满分14分)
已知函数
,
,
图象与
轴异于原点的交点M处的切线为
,
与
轴的交点N处的切线为
, 并且
与
平行.
(1)求
的值;
(2)已知实数t∈R,求函数
的最小值;
(3)令
,给定
,对于两个大于1的正数
,
存在实数
满足:
,
,并且使得不等式
恒成立,求实数
的取值范围.
(本小题满分14分)
已知点
,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且
.
(1)求动点
的轨迹
的方程;
(2)已知圆
过定点
,圆心
在轨迹
上运动,且圆
与
轴交于
、
两点,设
,
,求
的最大值.
(本小题满分14分)
一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.
(Ⅰ)请画出该几何体的直观图,并求出它的体积;
(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A1B1C1D1? 如何组拼?试证明你的结论;
(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD—A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值。
(本小题满分14分)
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
| 喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
| 男生 |
5 |
||
| 女生 |
10 |
||
| 合计 |
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为
,求
的分布列与期望.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:
,其中
)
(本小题满分12分)
设函数
(
),已知数列

是公差为2的等差数列,且
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)当
时,求证:
.