(本小题满分13分)经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格(元)与时间
(天)的函数关系近似满足
(
为正的常数),日销售量
(件)与时间
(天)的函数关系近似满足
,且第25天的销售金额为13000元.
(1)求的值;
(2)试写出该商品的日销售金额关于时间
的函数关系式,并求前半个月销售金额
的最小值。
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求的值;
(2)把在前排就坐的高二代表队6人分别记为,现随机从中抽取2人上台抽奖,
求和
至少有一人上台抽奖的概率;
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数
,并按如右所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
(本小题10分)已知函数.
(1)若,求函数
的值;
(2)求函数的值域.
(本小题满分12分)在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:相切.
(Ⅰ)求圆O的方程;
(Ⅱ)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.
(本小题满分12分)已知数列{an}满足:Sn=1﹣an(n∈N*),其中Sn为数列{an}的前n项和.
(Ⅰ)试求{an}的通项公式;
(Ⅱ)若数列{bn}满足,试求{bn}的前n项和公式Tn.
如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.
(Ⅰ)求证:AB1∥平面BC1D;
(Ⅱ)求四棱锥B﹣AA1C1D的体积.