已知函数,
(Ⅰ)若,求函数
的极值;
(Ⅱ)设函数,求函数
的单调区间;
(Ⅲ)若在区间(
)上存在一点
,使得
成立,求
的取值范围.
已知椭圆的焦点在
轴上,离心率
,且经过点
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)斜率为的直线
与椭圆
相交于
两点,求证:直线
与
的倾斜角互补.
四棱锥中,底面
为平行四边形,侧面
底面
,
为
的中点,已知
,
(Ⅰ)求证:;
(Ⅱ)在上求一点
,使
平面
;
(Ⅲ)求三棱锥的体积.
甲、乙两个盒子中各有3个球,其中甲盒中有2个黑球1个白球,乙盒中有1个黑球2个白球,所有球之间只有颜色区别.
(Ⅰ)若从甲、乙两个盒子中各取一个球,求取出的2个球颜色相同的概率;
(Ⅱ)将这两个盒子中的球混合在一起,从中任取2个,求取出的2个球中至少有一个黑球的概率.
设.
(1)解不等式;
(2)若对任意实数,
恒成立,求实数a的取值范围.