(本小题满分14分)
已知数列的前
项和
,函数
对
有
,数列
满足
.
(1)分别求数列、
的通项公式;
(2)若数列满足
,
是数列
的前
项和,若存在正实数
,使不等式
对于一切的
恒成立,求
的取值范围.
(本小题满分13分)某医药公司研制了甲、乙两种抗“ABL病毒”的药物,用若干试验组进行临床对比试验.每个试验组由4位该病毒的感染者组成,其中2人服用甲种药物,另2人服用乙种药物,然后观察疗效.若在一个试验组中,服用甲种药物有效的人数比服用乙种药物有效的人数多,就称该试验组为甲类组.设每为感染者服用甲种药物有效的概率为,服用乙种药物有效的概率为
.
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察三个试验组,用X表示这三个试验组中甲类组的个数,求X的分布列和数学期望.
(本小题满分13分)如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.
(Ⅰ)求证:AF//平面BDH;
(Ⅱ)求二面角A﹣FE﹣C的大小.
已知
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设,且
,求
.
(本小题满分7分)选修4—5:不等式选讲
已知函数的最小值为3.
(Ⅰ)求实数的取值范围;
(Ⅱ)若,且
,求证
.
以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线
的参数方程是
(
为参数),圆
的极坐标方程是
.
(Ⅰ)求直线的方程和圆
的直角坐标方程;
(Ⅱ)求直线被圆
截得的弦长.