(本小题满分12分)
某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率;
(2)如果用分层抽样的方法从“优秀”和“良好” 的学生中选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
(本小题15分)已知,
是实数,方程
有两个实根
,
,数列
满足
,
,
(Ⅰ)求数列的通项公式(用
,
表示);
(Ⅱ)若,
,求
的前
项和.
(本小题满分14分)设直线(其中
,
为整数)与椭圆
交于不同两点
,
,与双曲线
交于不同两点
,
,问是否存在直线
,使得向量
,若存在,指出这样的直线有多少条?若不存在,请说明理由.
(本小题满分14分)已知.
(1)若,函数
在其定义域内是增函数,求
的取值范围.
(2)在(1)的结论下,设,求函数
的最小值;
(3)若的图象与
轴交于
,
中点为
,求证:
.
(本小题满分13分)直线与椭圆
交于
,
两点,已知
,
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点
,(
为半焦距),求直线
的斜率
的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题满分13分)已知数列的前
项和为
,数列
满足
,
.
(1)求数列的通项公式;(2)求数列
的前
项和
;
(3)是否存在非零实数,使得数列
为等差数列,证明你的结论.