(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(文)已知椭圆的一个焦点为
,点
在椭圆
上,点
满足
(其中
为坐标原点), 过点
作一斜率为
的直线交椭圆于
、
两点(其中
点在
轴上方,
点在
轴下方) .
(1)求椭圆的方程;
(2)若,求
的面积;
(3)设点为点
关于
轴的对称点,判断
与
的位置关系,并说明理由.
计算(1)
(2)
已知且
,求实数
的取值范围.
(本小题满分12分)
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
(本小题满分12分)
设函数的图像与直线
相切于点
.
(Ⅰ)求的值;
(Ⅱ)讨论函数的单调性.
(本小题满分12分)
已知函数
(1)若是
的极值点,求
在
上的最大值
(2)若函数是R上的单调递增函数,求实数的
的取值范围.